Appendix A Reinforcement quantities This Appendix contains Tables A1, A2, A3, A4 and A5 referred to in method 2 of subsection 3.9. The factors for converting reinforcement areas into unit weights of reinforcement assume that: - (a) the reinforcement areas are those of practical bar arrangements, e.g. standard sizes at realistic spacings in beams; an even number of bars in columns. - (b) the detailing is in accordance with reference 2. ## Table A1 Solid slabs and stairs ## Minimum reinforcement: high yield bars - 0.13% of gross cross-section mild steel bars - 0.24% of gross cross-section | Type of slab | A _{sx} required | A _{sy} required | Weight
kg/m² | Remarks | |---|---|---------------------------------------|-----------------------------|---| | One-way
spanning
slabs | $\frac{M}{(0.8d)(0.87f_{\rm y})}$ | Minimum steel or 0.25 A _{sx} | 0.0125 A' _{sx} * | M is the maximum bending moment per metre width anywhere in the slab. | | Two-way
spanning
slabs with
linear
supports | $\frac{M_{\rm x}}{(0.8d)(0.87f_{\rm y})}$ | $\frac{M_{y}}{0.8(d-20) \ 0.87f_{y}}$ | $0.011 (A'_{sx} + A'_{sy})$ | M _x and M _y are the maximum bending moments per metre width in each direction | | Flat slabs
on column
supports | $\frac{M_{\rm x}}{(0.8d)(0.87f_{\rm y})}$ | $0.8 (d -20) 0.87 f_{y}$ | | M_x and M_y are the mean (of the column and middle strip) maximum bending moments per metre width in each direction | ^{*}This includes weight of distribution steel. Notes to Table A1 1. All the bending moments are the design ultimate moments. A_{xx} and A_{xy} are areas of reinforcement required in two orthogonal directions. A'_{xx} and A'_{xy} are areas of reinforcement (in mm²) selected per metre width in two orthogonal directions. Consistent units must be used in the formulas for obtaining areas of reinforcement. ## Table A2 Ribbed and coffered slabs Minimum reinforcement Ribs high yield steel – 0.25% $b_{\rm w}h$ mild steel – 0.50% b_wh where $b_{\mathbf{w}}$ is the average width of the ribs and h is the overall depth of the slab Structural topping high yield steel - 0.13% of gross cross-section of topping mild steel - 0.24% of gross cross-section of topping | Type of slab | A _s required (in each direction for two-way and flat slabs), mm ² | Weight kg/m ² | | Remarks | |---|--|--|---|--| | | | Ribs | Structural
topping | | | One-way
spanning
slabs | $\frac{M}{0.87f_{y} (d-0.5h_{t})}$ | 0.009 A's | For fabric reinforcement: 1.25 × wt/m ² of fabric | M is the maximum
bending moment
per rib anywhere
in the slab | | | | | For loose bar
reinforcement:
0.009 (sum of bar
areas per m width
in each direction) | | | Two-way
spanning
slabs on
linear
supports | $\frac{M}{0.87f_y (d-10-0.5h_t)}$ | 0.02 A's | As for one-way spanning slabs | M is the maximum
bending moment
per rib in the two
directions | | Coffered
slabs on
column
supports | $ \frac{M_{x}}{0.87f_{y} (d-0.5h_{t})} $ and $ \frac{M_{y}}{0.87f_{y} (d-20-0.5h_{t})} $ | $\frac{0.013 \left(A'_{sx} + A'_{sy}\right)}{c}$ | As for one-way spanning slabs | M _x and M _y are the mean (of the column and middle strips) maximum bending moments per rib in each direction | Notes to Table A2 ^{1.} All bending moments are the design ultimate moments. c is the spacing of ribs in metres. Consistent units should be used in the formulas for obtaining areas of reinforcement. A'_s, A'_{sx} and A'_{sy} are the areas (in mm²) of bars selected per rib.